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We show that in the mutual synchronization of periodic oscillators, besides an attracting torus, there is also
a saddle torus that plays an equally important role. We demonstrate that the saddle and stable tori form an
elegant structure, allowing for a variety of phenomena, both known and new, related to the origin and evolution
of coexisting synchronous regimes �phase multistability�.
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I. INTRODUCTION

Synchronization is a fundamental phenomenon in the
physics of oscillations. It manifests not only in physics, but
also in biology, chemistry, and many other branches of sci-
ence and engineering. It can involve coupled or forced peri-
odic �1,2�, chaotic �3–5�, and even stochastic self-oscillators
�6�. Synchronization implies an adjustment of the basic time
scales of systems due to coupling between them. For peri-
odic oscillations �the simplest case�, synchronization can be
attributed to certain bifurcations on an invariant ergodic
torus. Two basic mechanisms of synchronization can be dis-
tinguished: phase (frequency) locking, which is associated
with a saddle-node �fold� bifurcation of a saddle cycle and a
stable limit cycle on the torus surface, and suppression of the
natural dynamics, when an ergodic torus collapses into a
limit cycle via a torus death �Neimark-Sacker� bifurcation
�2,7�.

The dynamics of mutually coupled periodic oscillators is
highly complex. In addition to synchronization, diverse phe-
nomena such as amplitude death �8�, chaotic oscillations �9�,
and phase multistability �10� can occur. Phase multistability
means that, even for precisely the same set of control param-
eters, the interacting oscillators can be synchronized with
different phase shifts depending on the initial conditions,
which means that several synchronous attractors can coexist
in their joint phase space. Phase multistability can even take
place in the simple case of two mutually coupled Van der Pol
oscillators �10�.

Although the general mechanisms for mutual synchroni-
zation have been intensively studied, there remain a number
of unsolved fundamental problems. In particular, it is known
that inside the locking region the coexisting limit cycles usu-
ally live on the surface of the same torus, their basins of
attraction being separated by the manifolds of saddle cycles

lying on the same torus. It is equally well established that, as
one leaves the locking region and enters the suppression re-
gion, the saddle cycles with their delimiting manifolds dis-
appear through a bifurcation. However, phase multistability
continues to exist. So several questions immediately arise:
As one crosses the boundary between locking and suppres-
sion, how does the structure of phase space change? What
bifurcations accompany this change? What separates the ba-
sins of attraction of the coexisting limit cycles?

Note that the coexistence of different limit sets inside the
synchronization region is a very general phenomenon that is
observed in many interacting systems with diverse forms of
coupling �11–16�, so that these are important questions of
considerable general interest. Most works on phase multista-
bility study the case of weak linear coupling, for which syn-
chronzation is realized via frequency/phase locking; it re-
mains unclear how the phase space structure evolves in the
cases of large coupling and/or nonlinear coupling.

In this paper we study the simplest representative example
of two periodic mutually coupled oscillators with either lin-
ear or nonlinear coupling, which describes the general case
of coexisting limit cycles and of associated bifurcational
transitions. We reveal the phase space structure of the system
under study, allowing us to explain the phenomena men-
tioned above. In Sec. II we introduce the system to be stud-
ied and identify explicitly the questions to which we seeks
answers. In Sec. III we discuss the form of phase space nec-
essary to account for the observed phenomena and thus pro-
vide answers to the questions posed. In order to validate the
hypothesized phase space structure, it is analyzed in detail
and subjected to a variety of tests in Sec. IV. It is shown to be
self-consistent and to meet all requirements. In Sec. V we
check the generality of our results considering other example
of coupled oscillators. Finally, in Sec. VI, the work is sum-
marized and conclusions are drawn.

II. SYSTEM UNDER STUDY AND QUESTIONS POSED

As a paradigm for a pair of coupled, periodic, self-
sustained oscillators, we consider two mutually coupled Van
der Pol systems:
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ẋ1,2 = y1,2,

ẏ1,2 = ��1,2 − x1,2
2 �y1,2 − �1,2

2 x1,2 + C1�x2,1 − x1,2�

+ C2�x2,1 − x1,2�2. �1�

Here, �1,2 are nonlinearity parameters, �1=� and �2= p� are
eigenfrequencies, where p introduces detuning between the
systems, and C1 , C2 are the strengths of the linear and of
quadratic couplings, respectively.

We initiate our studies by considering the simplest linear
coupling �C1�0, C2=0� leading to the coexisting limit sets
and associated bifurcations of interest. However, in order to
estimate how a more complex coupling influences the coex-
isting regimes and their evolution, we also consider a non-
linear interaction where the coupling function includes a
quadratic term. Although in what follows we fix equal non-
linearities �1=�2=0.5, all results reported below were also
reproduced for unequal nonlinearities, �1=0.5 and �2=0.52.
We choose �=1, and change p around 1 in order to study the
basic 1 :1 synchronization region. For these parameter values
there are six cycles involved: two stable cycles that we fur-
ther refer to as S1,2, two saddle cycles �with one unstable
direction� S1,2

* , and two “double-saddle” cycles �with two
unstable directions� U1,2. These cycles can undergo two
types of bifurcation: fold while merging in pairs �S1,2 with
S1,2

* , or S1,2
* with U1,2�, or torus birth �S1,2 only�.

In the bifurcation diagrams shown in Figs. 1–3, shaded
regions mark the absence of 1:1 synchronization and will
not be considered further in the present work.

A. Linear coupling and multistability

First, we study linear mutual coupling by setting C2=0. In
the p-C1 parameter plane the region of phase locking �the

main part of Fig. 1� �17� is outlined by full lines on which
fold bifurcations between different pairs of cycles occur.
Dashed lines mark torus birth bifurcation and enclose the
region of suppression. At very small C1, the locking region
looks like a classical Arnol’d tongue. However, at larger C1
another narrower “tongue” can be found, embedded within
the first one.

Within the smaller tongue S1 and S2 coexist on the surface
of the same stable torus, separated by S1

* and S2
*, while U1,2

live in the neighborhood. To illustrate how cycles appear/
disappear within and at the boundaries of the phase-locking
region, we follow routes A and B in Fig. 1, as marked by the
dotted lines. Insets show evolution of cycles maxima xmax
along the routes. Along route A �the left-hand inset of Fig.
1�, S1,2 and S1,2

* merge or appear in pairs, always on the same

FIG. 1. �Color online� Central figure: bifurcation diagram show-
ing the synchronization region for linear coupling, on the p-C1

�detuning-coupling strength� plane. In the shaded areas there are no
1:1 synchronous solutions. The full lines are fold bifurcations, and
the heavy dashed lines are Neimark-Sacker bifurcations leading to
torus birth. The dotted lines show the two routes A and B across the
diagram that are illustrated in the insets. The filled black circle 1
marks the parameter values for which the structure of phase space is
shown in Fig. 5�b�. Inset A shows how the positions of the maxima
xmax of the stable S1,2 and single-saddle S1,2

* cycles depend on p for
C1=0.15. Inset B shows how xmax of all six cycles depend on C1 for
p=1.002. In insets full lines represent S1,2, dashed lines S1,2

* , and
grey lines the double-saddle cycles U1,2.

FIG. 2. �Color online� Bifurcation diagrams in the p-C2 param-
eter plane for four different values of C1. In the shaded areas there
are no 1:1 synchronous solutions. Full black lines are fold bifurca-
tions; dashed lines show Neimark-Sacker bifurcation; full grey line
for C1=0.2 �see also Fig. 3� shows fold bifurcations for stable and
saddle tori.

FIG. 3. �Color online� Bifurcation diagram on the p-C2 plane for
C1=0.2. In the shaded areas there are no 1:1 synchronous solutions.
Full black lines are fold bifurcations for the pairs of cycles S1,2 and
S1,2

* , and S1,2
* and U1,2. Dashed lines are Neimark-Sacker bifurca-

tions for the cycles S1,2. A full grey �green online� line is the fold
bifurcation for a saddle torus T* and a stable torus T2 born from S2.
In the region bounded by the dashed line from below and by the full
grey line from above �see the inset�, a stable cycle S1, and a stable
torus T2 coexist.
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torus surface. U1,2 that do not undergo bifurcations exist
throughout the route �not shown�. Along route B �the right-
hand inset of Fig. 1� all six cycles undergo fold bifurcations.
Above the upper border of the phase-locking region at C1
�0.192, there are only two cycles S1,2 left, both stable.

It is evident from the right-hand inset of Fig. 1 that, for
C1=0.2, p=1.002 �i.e., inside the suppression region�, two
stable limit cycles S1,2 coexist in phase space. However,
there are no saddle cycles S1,2

* whose stable manifolds could
separate the basins of attraction. So the following question
arises: What separates the basins of attraction here?

B. Nonlinear coupling and disappearance of a stable torus

Now let us take account of nonlinear coupling. We have
two coupling parameters C1 and C2, and one detuning pa-
rameter p, so the control parameter space of interest becomes
three dimensional. Consequently, we will have bifurcation
surfaces rather than lines. Because it is difficult to visualize
surfaces of such intricate shape intertwining in the three-
dimensional �3-D� parameter space, we show four represen-
tative sections in the plane p-C2 at four fixed values of C1
�Fig. 2�. One can see that at C1=0, i.e., when the coupling is
quadratic without a linear component, the synchronization
tongue possesses the classical shape that exists in a harmoni-
cally forced periodic oscillator. It is even simpler than for
purely linear coupling �cf. Fig. 1� and has single-leaf struc-
ture, implying the absence of phase multistability. As C1 in-
creases, however, the bifurcation diagram becomes more in-
volved, with new bifurcation lines appearing, crossing each
other, and merging. Also, in some parts of the diagrams two
stable objects evidently coexist in the phase space, with the
diagrams becoming multileaf. In each of Figs. 2�a�–2�d�, an
increase of C2 eventually leads to the disappearance of one
of the coexisting periodic regimes as a result of a certain
bifurcation, so that the diagram becomes single leaf.

Consider in more detail the lower part of the diagram for
C1=0.2 �Fig. 3�. The left and right-hand borders of the syn-
chronization region are formed by lines of fold bifurcations
of pairs of cycles S1,2 with S1,2

* , and of S1,2
* with U1,2, as

shown by full lines. On dashed lines, stable cycles S1,2 lose
their stability via Neimark-Sacker bifurcations. The latter can
either be supercritical, leading to the birth of stable tori, or
subcritical not resulting in a torus birth.

Note that the point C1=0.2, C2=0 , p=1.002 in Figs. 2
and 3 is in fact identical with point C1=0.2, p=1.002 in Fig.
1. Thus the same limit cycles S1,2 coexist here as those illus-
trated on the right-hand inset of Fig. 1 at C1=0.2.

In Fig. 3, on the almost horizontal segment of dashed line,
the stable cycle S2 undergoes a Neimark-Sacker bifurcation.
If after crossing the dashed line one finds oneself in the re-
gion bounded by a dashed line from below, and by full grey
�green online� from above �see the inset of Fig. 3�, a stable
torus T2 is born, and the cycle S2 becomes a double-saddle

cycle �we mark its instability by an overtilde: S̃2�. An inter-
esting component of this bifurcation diagram is the full grey
�green online� line on which T2 disappears via a bifurcation.
Since the latter is not of a cycle, but of a torus, the corre-
sponding line was obtained not by a continuation algorithm,

but by observing phase portraits and marking the parameter
values at which T2 vanished. Remarkably, there is no sign of
torus distortion or of the quasiperiod tending to infinity be-
fore the bifurcation, as usually accompany homoclinic bifur-
cations: the torus vanishes while remaining smooth and of
finite size. So the question here is as follows: Why does the
torus disappear?

III. HYPOTHESIZED STRUCTURE OF THE PHASE
SPACE

To answer the questions posed in Sec. II, we have to
reveal the structure of phase space, and to show that it allows
for all observed bifurcations of limit cycles and provides a
separating surface for the coexisting stable cycles in the re-
gion of suppression. This structure should also explain the
sudden disappearance of the smooth torus T2.

The main facts to be accounted for are as follows.
�1� Both stable cycles S1,2, together with both single-

saddle cycles S1,2
* lie on the same torus, as illustrated by the

left-hand inset of Fig. 1.
�2� As partly illustrated by insets of Fig. 1, any single-

saddle cycle S1,2
* is able to merge, either with any stable

cycle S1,2, or with any double-saddle cycle U1,2.
From facts �1� and �2� we hypothesise that, inside the

central part of locking region of Fig. 1 containing point �1�,
there exist two different tori in the phase space, in contrast to
the single torus in the case of a forced 2-dimensional system.
Of these, the first is an attracting resonant torus whose di-
mension is 2 and whose surface is formed by the
2-dimensional unstable manifolds of the single-saddle cycles
S1,2

* that close on stable cycles S1,2. A sketch of its Poincaré
section is shown in Fig. 4�a� by the full black closed curve;
circles mark the positions of cycles. This resonant torus is
similar to that which exists in a forced system, but now,
instead of one pair of cycles, it has two pairs of cycles lying
on it.

The second torus is a saddle resonant torus, also of di-
mension 2. In the Poincaré section a two-dimensional saddle
torus will look like a saddle cycle, and its manifolds will
look like those of a saddle cycle. A section of a resonant
saddle torus is sketched in Fig. 4�b� together with its mani-
folds. In the full phase space, a saddle torus is the intersec-

FIG. 4. �Color online� Sketches of Poincaré sections of �a� the
attracting resonant torus T, �b� the saddle resonant torus T* shown
as a closed grey �green online� curve, and its manifolds shown as
surfaces. The circles indicate cycles: filled ones represent the stable
cycles S1,2; open ones represent the single-saddle cycles S1,2

* ; and
grey �green online� ones represent the double-saddle cycles U1,2.
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tion of two three-dimensional manifolds. We note that the
minimum dimension of the phase space into which a three-
dimensional manifold can be embedded, and thus where a
saddle torus could exist, is four dimensional—which is in-
deed the dimension of the system, Eqs. �1�, under study.

The manifolds that cross to form a saddle torus play a
very important role, and they need to be revealed. However,
their dimension is 3, so that they cannot be visualized though
projection from the four-dimensional to the three-
dimensional space. For this reason, throughout this paper,
instead of showing projections of the objects involved, we
will show their Poincaré sections. Thus cycles will turn into
points, tori into closed curves, and three-dimensional mani-
folds into surfaces in three-dimensional space.

We hypothesize that the two tori intersect at the single-
saddle cycles S1,2

* as shown in Fig. 5�a�.
�3� Given facts 1 and 2, both tori should lie on the same

closed hypersurface �“sphere”�. The latter is the unstable
manifold of the saddle torus sketched as the cylinder in Fig.
4�b� which, instead of going to infinity, should be closed
from below and from above. This “sphere” would then be a
central manifold for the Neimark-Sacker bifurcation of the
stable cycle S2 on the dashed line in Fig. 3.

The Poincaré section of the hypothesised structure in the
three-dimensional space is sketched in Fig. 5�a�. Here, cycles
are given by circles: black—S1,2, white—S1,2

* , grey �green
online�—U1,2. Full closed curves show tori. Surfaces show
manifolds of the saddle torus: horizontal plane—stable, and
sphere—unstable manifolds, respectively.

If the structure shown in Fig. 5�a� is correct, the stable
manifold of the saddle torus shown as a plane is the sought-
after surface separating the basins of the two coexisting
cycles S1,2. Although the proposed structure is self-consistent
and would provide an elegant answer to the above questions,
its existence needs to be verified. The best way to do this is
to try to visualize the structure numerically. However, at the
moment there seems to be no numerical method available

that would allow one to visualize a saddle torus. We there-
fore require a way to plot the inferred saddle torus using
what we know about the system and exploiting all necessary
implications of the hypothesized structure’s existence. We
address this problem in the next section.

IV. VERIFYING THE HYPOTHESIZED STRUCTURE OF
THE PHASE SPACE

A. Structure at linear coupling with multistability

First, we note that our hypothesis assumes two pairs of
cycles S1,2 and S1,2

* lying on the same closed curve �the reso-
nant torus� T. An indication of this can be seen in Fig. 1
�inset A� showing that with the change in p all four cycles
move along the same closed curve. However, the assumption
must also be verified for fixed system parameters. A resonant
torus can be visualized numerically with the help of an ex-
isting technique �18� that involves surrounding the torus by a
closed surface and following its evolution in time. Since T is
an attracting structure as a whole, and despite the real attrac-
tors being cycles S1,2 lying on it, the closed surface will tend
eventually to coincide with the torus. Performing this calcu-
lation for C2=0, p=1.002, and C1=0.15 in Eq. �1� �point 1 in
Fig. 1�, we obtained a closed curve in the Poincaré section
�the black curve in Fig. 5�b�� representing the torus T sought.
As an independent test of validity of this torus, we plot the
cycles S1,2 and S1,2

* in the same figure to show that they do
indeed lie on the closed curve found.

Second, we note that, to enable trajectories from inside
the sphere to be attracted to its surface, a repelling object
should exist inside it; and, indeed, it can be easily shown that
there is a repelling fixed point at the origin. If time is re-
versed, a repeller becomes an attractor; and, if the hypoth-
esized sphere exists, it will become the boundary between
the basins of attraction of the fixed point and of infinity. We
were thus able to compute the basin of attraction of the fixed
point in reversed time for the above parameters, and esti-
mated its boundary numerically. This indeed appeared to be a
closed surface topologically equivalent to a sphere �not
shown, to avoid overloading the figures�.

Third, if the hypothesized picture is true, both the stable
torus T and double-saddle cycles U1,2 should lie on the
sphere. T should divide the sphere into two halves, each
containing one of the double-saddle cycles, a conclusion that
was verified within our numerical accuracy.

Fourth, the manifold sketched in Fig. 5�a� as a plane sepa-
rating the basins of attraction of coexisting limit cycles S1
and S2, can be calculated in a similar way to that used for the
sphere, through a calculation of the basins. The surface thus
found �again, not shown� was indeed not closed, at least
within the relevant part of phase space.

Fifth, if the saddle torus exists, it should be a closed curve
at which the surfaces found above intersect each other. We
have established that the sphere and the plane do indeed
intersect, and have estimated their points of intersection nu-
merically, yielding the closed curve shown in Fig. 5�b� by
grey �green online�, that is supposedly the saddle torus T*

being sought �cf. Fig. 5�a��.

FIG. 5. �Color online� Poincaré sections of objects in the phase
space. �a� Hypothesized structure of phase space inside the region
where phase locking of the mutually coupled periodic oscillators
occurs. A dotted line shows the “sphere,” which in fact corresponds
to the cylinder in Fig. 4�b� that is closed from below and above. �b�
A numerically revealed structure of the phase space at parameter
values corresponding to the point labeled 1 in Fig. 1. The circles
indicate cycles: filled ones are the stable cycles S1,2; open ones are
the single-saddle cycles S1,2

* ; grey �green online� are the double-
saddle cycles U1,2. The full closed curves show tori: the black ones
are stable T, and grey �green online� ones are saddle T*. For details,
see the text.
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Finally, the saddle torus T* should intersect with the stable
torus T at cycles S1,2

* , and U1,2 should lie on its surface as
well. This too appears to be true within numerical accuracy
�compare Fig. 5�b� with Fig. 5�a��. Because the calculation
of basins of attraction does not require knowledge of the
positions of cycles S1,2

* and U1,2, the fact that they were
found to be in the expected places provides another indepen-
dent argument supporting the validity of the structure under
consideration.

Our hypothesized structure of phase space in the central
part of the locking region for two mutually coupled periodic
oscillators is thus shown to be valid. This structure provides
the answer to the question: What separates the basins of
attraction of coexisting limit cycles S1,2 in the region of sup-
pression lying above all the full lines in the upper part of the
bifurcation diagram of Fig. 1? In this region, the saddle
cycles S1,2

* do not exist, having merged with the double-
saddle cycles U1,2 via fold bifurcations. However, the saddle
torus on which all the above cycles lived continues to exist
as an ergodic one, and thus provides the required three-
dimensional stable manifold that serves as a delimiting sur-
face.

B. Structure at nonlinear coupling and disappearance of a
stable torus

Next, we consider the abrupt disappearance of the newly
born torus T2 under nonlinear coupling, as the grey �green
online� line of Fig. 3 is crossed from below to above. Below
the dashed line lies the region of suppression, with a phase
space structure that is qualitatively the same as in the sup-
pression region of Fig. 1. This means that in the phase space
there coexist two stable cycles S1,2, and a saddle torus that is
now ergodic. When the torus T2 is born from S2 on the
dashed line, the phase space structure must look like that
sketched in Fig. 6�a�. Note that T2 must also lie on the
“sphere” since it is the central manifold of torus birth bifur-
cation.

As parameter C2 is gradually increased above the value of
torus birth bifurcation, the torus diameter increases. How-
ever, being bounded to lie on the sphere, the only opportu-
nity for it to grow is to move toward the equator, i.e., toward
the saddle torus T*. The inevitable consequence is that, even-
tually, T2 must collide with T* and disappear, which would
imply a fold bifurcation. After that, the only attractor of the
system would be the stable cycle S1.

This suggestion was tested by use of methods similar to
those resulting in Fig. 5�b�. For each of two sets of param-
eters inside the region where the cycle S1 and torus T2 coex-
ist, marked as points 2 and 3 in Fig. 3, the two tori were
obtained numerically. In Fig. 6�b� the phase space is illus-
trated for point 2, and in Fig. 6�c� for point 3. It is clearly
seen that, immediately after the torus birth bifurcation �Fig.
6�b��, the new torus T2 is small and is situated relatively far
from the saddle torus T*. Also, it does belong to the sphere
that is not illustrated here. However, close to the parameter
value at which T2 disappears �Fig. 6�c��, both tori are very
close to each other, almost coinciding in shape and size.
These figures support our hypothesis of a fold bifurcation of

the two tori and thus provide the mechanism by which the
stable torus disappears.

V. GENERALITY CHECK: PHASE SPACE STRUCTURE
IN A DIFFERENT SYSTEM

After having revealed the structure of the phase space for
two coupled Van der Pol oscillators, each being a paradigm
for periodic self-sustained oscillators, we are naturally inter-
ested to seek evidence as to whether this structure is general.
So we consider another system of two coupled periodic self-
oscillators, namely, two simplified FitzHugh-Nagumo sys-
tems in their oscillatory regimes, each of the form

ẋ1,2 = x1,2 − x1,2
3 /3 − y1,2,

ẏ1,2 = x1,2 + a + C�y2,1 − y1,2� , �2�

for control parameter values a=0.1, C=0.17. Here we con-
sider identical oscillators to ensure that they are 1:1 synchro-
nized. At our chosen value of C=0.17 they are in fact phase
locked, as can be verified by a bifurcation analysis.

All stages of the computation were carried out in close
analogy with the coupled Van der Pol systems, Eqs. �1�, de-
scribed in Sec. IV B. The final configuration of objects found
in the phase space is as shown in Fig. 7. One can see imme-
diately that the objects themselves, and their configuration,
are just as hypothesized �Fig. 5�a�� and are essentially the
same as in the coupled Van der Pol systems �Fig. 5�b��.

VI. CONCLUSIONS

In conclusion, we have revealed the structure of the joint
phase space of two mutually coupled periodic Van der Pol
oscillators within the synchronization regime, thereby en-

FIG. 6. �Color online� Poincaré sections of objects in the phase
space. �a� A hypothesized structure of phase space inside the sup-
pression regime for the mutually coupled periodic oscillators, in
particular, inside the region containing points 2 and 3 in the inset of
Fig. 3, where a stable cycle coexists with a stable torus. �b� and �c�
A numerically revealed structure of the phase space at parameter
values corresponding to points 2 and 3 in Fig. 3, respectively. Des-
ignations are as in Fig. 5. The full black line here shows the newly
born stable torus T2.
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abling us to answer the questions posed in the Introduction
and Sec. II. We have shown that, quite generally, there are
two tori lying on the same closed manifold, intersecting to
form an elegant structure. All evolutions of synchronous at-
tractors are closely associated with bifurcations of solutions
belonging to either saddle tori, or stable tori, or both, or of

the tori themselves. As discussed in Sec. V, the same phase
space structure was also revealed in two coupled FitzHugh-
Nagumo systems in their oscillatory regime. A deeper under-
standing of the physics of such interacting oscillators, and
their complex mutual phase space structure, could facilitate
the manipulation of dynamical systems with phase multista-
bility in a variety of practical applications, e.g., in biology
and medicine, where phase multistability is often of vital
importance �4,11�.

In addition, we have introduced a method of visualizing
saddle tori that could prove useful in the wide variety of
problems where such objects appear.
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FIG. 7. �Color online� Poincaré sections of objects in the phase
space of two coupled FitzHugh-Nagumo systems, Eqs. �2�. Desig-
nations are as in Fig. 5.

BALANOV et al. PHYSICAL REVIEW E 72, 026214 �2005�

026214-6


